Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 22(11)2021 May 29.
Article in English | MEDLINE | ID: covidwho-1389398

ABSTRACT

Trypsin-like proteases (TLPs) belong to a family of serine enzymes with primary substrate specificities for the basic residues, lysine and arginine, in the P1 position. Whilst initially perceived as soluble enzymes that are extracellularly secreted, a number of novel TLPs that are anchored in the cell membrane have since been discovered. Muco-obstructive lung diseases (MucOLDs) are characterised by the accumulation of hyper-concentrated mucus in the small airways, leading to persistent inflammation, infection and dysregulated protease activity. Although neutrophilic serine proteases, particularly neutrophil elastase, have been implicated in the propagation of inflammation and local tissue destruction, it is likely that the serine TLPs also contribute to various disease-relevant processes given the roles that a number of these enzymes play in the activation of both the epithelial sodium channel (ENaC) and protease-activated receptor 2 (PAR2). More recently, significant attention has focused on the activation of viruses such as SARS-CoV-2 by host TLPs. The purpose of this review was to highlight key TLPs linked to the activation of ENaC and PAR2 and their association with airway dehydration and inflammatory signalling pathways, respectively. The role of TLPs in viral infectivity will also be discussed in the context of the inhibition of TLP activities and the potential of these proteases as therapeutic targets.


Subject(s)
COVID-19/enzymology , Lung Diseases, Obstructive/enzymology , SARS-CoV-2/metabolism , Trypsin/metabolism , Animals , COVID-19/pathology , Epithelial Sodium Channels/metabolism , Humans , Lung Diseases, Obstructive/pathology , Receptor, PAR-2/metabolism
2.
Cell Rep ; 36(7): 109527, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1330685

ABSTRACT

COVID-19 pathology involves dysregulation of diverse molecular, cellular, and physiological processes. To expedite integrated and collaborative COVID-19 research, we completed multi-omics analysis of hospitalized COVID-19 patients, including matched analysis of the whole-blood transcriptome, plasma proteomics with two complementary platforms, cytokine profiling, plasma and red blood cell metabolomics, deep immune cell phenotyping by mass cytometry, and clinical data annotation. We refer to this multidimensional dataset as the COVIDome. We then created the COVIDome Explorer, an online researcher portal where the data can be analyzed and visualized in real time. We illustrate herein the use of the COVIDome dataset through a multi-omics analysis of biosignatures associated with C-reactive protein (CRP), an established marker of poor prognosis in COVID-19, revealing associations between CRP levels and damage-associated molecular patterns, depletion of protective serpins, and mitochondrial metabolism dysregulation. We expect that the COVIDome Explorer will rapidly accelerate data sharing, hypothesis testing, and discoveries worldwide.


Subject(s)
COVID-19/genetics , COVID-19/metabolism , Databases, Genetic , Metabolome , Proteome , Transcriptome , Access to Information , Adult , COVID-19/immunology , Case-Control Studies , Data Mining , Datasets as Topic , Female , Gene Expression Profiling , Humans , Male , Metabolomics , Middle Aged , Proteomics , Young Adult
3.
J Biol Chem ; 296: 100135, 2021.
Article in English | MEDLINE | ID: covidwho-955836

ABSTRACT

The ongoing COVID-19 pandemic has already caused over a million deaths worldwide, and this death toll will be much higher before effective treatments and vaccines are available. The causative agent of the disease, the coronavirus SARS-CoV-2, shows important similarities with the previously emerged SARS-CoV-1, but also striking differences. First, SARS-CoV-2 possesses a significantly higher transmission rate and infectivity than SARS-CoV-1 and has infected in a few months over 60 million people. Moreover, COVID-19 has a systemic character, as in addition to the lungs, it also affects the heart, liver, and kidneys among other organs of the patients and causes frequent thrombotic and neurological complications. In fact, the term "viral sepsis" has been recently coined to describe the clinical observations. Here I review current structure-function information on the viral spike proteins and the membrane fusion process to provide plausible explanations for these observations. I hypothesize that several membrane-associated serine proteinases (MASPs), in synergy with or in place of TMPRSS2, contribute to activate the SARS-CoV-2 spike protein. Relative concentrations of the attachment receptor, ACE2, MASPs, their endogenous inhibitors (the Kunitz-type transmembrane inhibitors, HAI-1/SPINT1 and HAI-2/SPINT2, as well as major circulating serpins) would determine the infection rate of host cells. The exclusive or predominant expression of major MASPs in specific human organs suggests a direct role of these proteinases in e.g., heart infection and myocardial injury, liver dysfunction, kidney damage, as well as neurological complications. Thorough consideration of these factors could have a positive impact on the control of the current COVID-19 pandemic.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/epidemiology , Pandemics , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/transmission , COVID-19/virology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Kidney/metabolism , Kidney/pathology , Kidney/virology , Liver/metabolism , Liver/pathology , Liver/virology , Membrane Fusion/genetics , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Myocardium/metabolism , Myocardium/pathology , Proteinase Inhibitory Proteins, Secretory/genetics , Proteinase Inhibitory Proteins, Secretory/metabolism , Receptors, Virus/chemistry , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Signal Transduction , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
4.
Br J Haematol ; 190(4): 520-524, 2020 08.
Article in English | MEDLINE | ID: covidwho-707353

ABSTRACT

Coronavirus disease 2019 (COVID-19) is frequently associated with severe systemic consequences, including vasculitis, a hyperinflammatory state and hypercoagulation. The mechanisms leading to these life-threatening abnormalities are multifactorial. Based on the analysis of publicly available interactomes, we propose that severe acute respiratory syndrome coronavirus-2 infection directly causes a deficiency in C1 esterase inhibitor, a pathogen-specific mechanism that may help explain significant systemic abnormalities in patients with COVID-19.


Subject(s)
COVID-19/metabolism , Complement C1 Inhibitor Protein/metabolism , SARS-CoV-2/metabolism , COVID-19/pathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL